N90-27854
CUOPLED BIPOLARONS AND OPTICAL PHONONS AS A MODEL FOR HIG{—TC SUPERCONDUCTORS

J. Kasperczyk
Phys. Inst., Ped. University, Zawadzkiego 13/15, PL-42201 Czestochowa (Poland)

1. INTRODUCTION.

All known up-to-date high-temperature superconductors are oxides ( mainly
copper oxides although compounds without copper were obtained, e.g. BaKBiO3 ).

On the other hand, more than 95 % of all ferroelectric compourkds are also oxi-
des or contain oxygen ion [1} . Therefore, the problem of mutual relation bet-
ween ferroelectricity and superconductivity is of great theoretical interest.

The electron-phonon interaction is important in both phenomena. In ferro-
electrics a cubic electron-phonon and/or a quartic electron-two-phonon inter-
actions play an essential role [1] . In classical superconductors ( of the BCS
type ) a cubic electron-one-phonon interaction leads to the formation of Coo-
per pairs of two electrons with opposite momenta and spins . The average dis-
tance ( in real space ) between the two electrons is of order of the so-called
coherence length ¢ which is much greater than lattice constant. of such a clas-
sical superconductor. However, the coherence length of the new high—temperatu-
re superconductors reaches very small value which is comparable to the dimen-
sions of unit cell of these compounds {3} . This means that a pair cousists of
two holes occupying the same site or two adjacent sites . Huch a situation
seems to be described by a model of the local-pairs ( bipolarons ) {2,3].

The origin of local-pair may come not only from strong enough electron or
hole-phonon interaction but also from other interactions Independent.ly of a
specific nature of such local-pairs, they can undergo a Bose-like condensation
to the superconducting state at a critical temperature which is usually much
lower than the temperature of the pair formation.

In this paper an interplay of ferroelectric anx superconducting properties
is considered within the model of hole-like local-pairs interacting with opti-
cal phonons . Therefore, we extend the usual local-pair Hamiltonian [2] by in-
cluding an direct interaction between the local-pairs and the optical phonons.
These optical phonons are known to play an important role in the ferrcelectric
transition if any and they transform into an additional psendo-acoustic branch
at the ferrcvelectric critical temperature [1] ( this is associated with ari-
sing of nonzero electric polarization due to existence of two separate latti-
ces composed of negative and positive ions, respectively ).

2. HAMILTONIAN OF INTERACTING LOCAL-PAIRS AND OPTICAL PHONONS.

The Hamiltonian of our system is as follows
H=-w SSCNN - AA ) +3( he_bib, — N, - AN (bi+b.) ), where
iJ i
A;(A,),b}(b,) are creation (annihilation) operators for the local-pair and the
optical phonon ( with frequency 1-'0) at the i-th site, respectively, Ni = A:Ai,
L is a local-pair bandwidth and p denotes the chemical potential An analysis
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of the above Hamiltonian can be carried out on the ground of the Bogolyubov's

inequality [4] for the free energy FEFt:F0+<H>O_<Ht 0 , with the
trial Hamiltonian in which the local-pairs and the phonons are decoupled
§(—w - WiA, - QN, + b BIB. ) = H L aie * P

where Wi , W: and Qi stand for variational parameters and B; ( Bi } are new

creation ( annihilation ) operators for phonon at the i-th site . The thermal
averages of the < >0typearedefinedasusual, e.g.,<H>0:Tr(QOH),
eg= ep( CH, ) /Tr(exp ( €H ), 6= (KT ", k, - the Boltzmam's
constant . Within the single site approximation which is egquivalent to the
mean—-field approximation ( MFA )

F.=-8"SInZ with the single-site partition fimction
0 0

Zg = ( exp(iﬁ’sl) +exp(62,) / (1 - exp(-Ch ) ) ,
where £, and £, are the eigenvalues of the Hamiltonian Hpair calculated in the
basis of states consisting of two single-site states : e, and ¢, which
describe a given site occupied ( e, ) or unoccupied ( e ) by a local-pair . A

straightforvard diagonalization of the H_. matrix [ 3 g ] leads o the

following eigen-energies
=(-Q- (- +a W)y 2
=(-Q+ (- +4W|P)Y?)y /2

K )
The variational parameters Q, W and W should be calculated by minimizing the
trial free energy Ft . One obtains the mean-field Hamiltonian HMFA by means

of the following decouplings

ZZA‘.‘A. > S5 <ADA; + ZZA‘T<A.>

i

Sz (A +FA)

ij i
ZZNR =>ZZ<N >N +ZZN <N>:221)§Ni
i j i

uhere oo, -<A >=<A> is the st;lpemxhxztlng order paramcter, v-v.“<N >»=<N> is

the oonccmtratlon of the local-pairs per one site and z denotes a coordmatlon
nmber ( a mmber of the nearest neighbours of a given site ). In the result

Hop = 5 (- % (A"~ o™A) + 20N + bbb - uN 2N (b'+b) )
i
with the parameter w = zwo
3. FREE ENERGY AND COUPLING RQUATIONS.

In this section we determine the trial free energy according to the

96



above Hamiltonian. The trial energy per one site . Ff / Zl takes the form

3
- - X
f, =06 * In( exp(-Gs ) + exp(-B¢,)) + O 1ln(1—exp(~ﬁhl’(,)) P W W -
2ufec]® + 27 + (@) + o ( <b'g - BB ) - n N (b'+b),,
In order to calculate the necessary averages let us introduce the new states
¢ _ ¢ tc ¢ 3 —c ¢ tc ¢
1 10D O 11 1 2 20 [8) 21 i

for which the matrix of Hpair has a diagonal form. The coefficients ¢ A can

be obtained from the equation : H ir &i =g, il ,i.e.

- —W* c,
W Qe i S

Taking into account the normalization condition for eigenfunctions i{i and ~1’»2

one obtains in the result :
c o= (14 e WP 7P = (/@ )) ( 1y W@ 2

2

2

e, = (1w [Wr@e)|” ) P = (e M (1w e AT

Consider the quamtities E_.k:OI‘}_ Ib—Bii‘k), where ¥ are the phonon eigenfunctions
ie. H 'I’k = khz-'D 'Pk (k=0,1,2,...) . let us Assume for simplicity that
S_.k =% and d’;,_ilb‘B‘ka):O for all values of k. The parameter © can be
treated as a non-variational quantity which is proport.ional to a lattice de-
formation . This deformation can be associated with arising a nonzero dipole
electric moment, i.e. with a ferroelectric phase irmsition. After some alge-
bra one comes to the following :
+ + *
- — £
<b b>0 <B B>0 -5 &
Using the calculated coefficients ¢ = one oblains -

CNbB>y=e/2 + LA salW]) [ 2-tanh (- (& +4]W]" )’ 2)] /2
The trial reduced free energy is then readily writlen as
£, = -6 In( exp(-fz,) + exp(-0c,)) + £ In(lexp( fih ) HH T mle|® 4

2w e(@ vt g e (T4 ) | 14 Q (@ +afW*) "7 2tanh(o @ v W) )

A minimization of the above thermodynamic potential with respect to W, ka, o,
o, @ and » leads to the following coupl ing equations
2,172

() = (@ +4|W]7) " P tanh (B (& 44 W[5 7Y - T W]

tanh(6 (@ +4|W|2) %) + 2T )ggQ(Q2+4|wtz)"‘[ <_-mh(ﬁ(Q2+4|w12)"2)} /2
2

21 = QU@ +4|W|%) ™ P tanh(G (@ +4[W]T) ) + 4 A ILINCELIL

tanh(S (@ +4]W|5)" %) +n T w )ﬁQZ(QZlelZ)"[ cxjsh(,«'i(qﬁqw;z)"‘z)] /2
W = 2w Q- 4w + + c.o .
It is easily seen that w:vi" and oc:lx*. The above set of eguation shouid be
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self-consistently solved.

4. GROUND STATE .

BytakjngthelimithbO,ﬂ)eemergyofagxumdstateperonesiteis

given by | 4‘
BE=db, /51 =- 2w’ + 20" — o+ b t? 4 s (/@ +aW ) )
i

Let us consider the purely superconducting groomd state for which the
ferroelectric order parameter ¢ disappears {£=0) . The supenmduzct.ing order
parameter strongly depends on the local-pair concentration , i.e. o« = (1)
The energy of the superconducting ground state is as follows

E = - 2w’ + 2w’ = 2w (22-1)

SC
For the purely ferroelectric ground state the superconducting order parameter
disappears ( «=W=0 ) and the energy is given by

E, = 207 +hot® - (/@)%
The normal state , i.e. ncle—&memxhwtir)g and paraelectric ( «=0 and £=0 ),
has the energy E = 2w . It is clearly seen that normal state cannot be

n

realized because of the lower energy of the superconducting state , at least
( ch < Eh ). Nevertheless, an competition is possible between superconducting

and ferroelectric states. The superconducting state is prefered if
20(12) > ( 2n¢ ~hv05, Y/

5. SUPERCONDUCTING TRANSITION

Let us return to finite temperatures. To get the superconducting critical
temperature Tc we assume that superconducting order parameter disappears
{( cx=<A>=0 ). The reduced critical temperature is thus given by

t = kT /w=a/ In((142)/(1-2)),

where q = QW = 20-1+((2-1)°-4pZ)""® , p= A ¢ /4 and the quantity 7% can be
mmerically calculated from the additional condition

0=q/2 - (a-2p)Z - p(1-Z) In((1+2)/(1-7))

It can be shown that maximm critical temperature is strongly enhanced due to
the rather moderate interaction up to = 0.3 . However, a nonzero value of ¢ ,
i.e. temperature below ferroelectric transition temperature, is necessary. For
stronger coupling and/or smaller bandwidth w , this effect weakens . On the
other hand , the high-temperature superconductivity is rather restricted to
the regions far from half-filling ( v = 1/2 ).
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